Yang-Baxterization of braid group representation associated with the seven-dimensional representation of G_{2}

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys. A: Math. Gen. 24569
(http://iopscience.iop.org/0305-4470/24/3/015)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 14:06

Please note that terms and conditions apply.

Yang-Baxterization of braid group representation associated with the seven-dimensional representation of \boldsymbol{G}_{2}

Mo-Lin $\mathrm{Ge} \dagger \|$, Lu-Yu Wang \ddagger and X P Kong§
\dagger Institute of Theoretical Physics, SUNY at Stony Brook, NY 11794-3840, USA \ddagger Department of Physics, XinJiang University, Urumchi, People's Republic of China § The Rockefeller University, New York, NY 10021, USA

Received 4 July 1990

Abstract

The explicit expression of a solution that relates to the seven-dimensional representation of the Lie algebra G_{2} of the quantum Yang-Baxter equation (QYBE) is obtained by applying the Yang-Baxterization procedure to the braid group representation (BGR). The result is consistent with an earlier one derived by a different method.

Recently the relation between the solutions of quantum Yang-Baxter equations (QYBE) and the representation of braid groups (BGR) has generated much interest [1-3]. Based on the quantum group (QG), a systematic method was formulated by Jimbo to generate the solutions of QYbe [4,5] which are related to Lie algebras A_{n}, B_{n}, C_{n} and D_{n} in their fundamental representations. In [6], the BGR associated with the fundamental representation of G_{2} was first obtained based on the general theory of the QG. The argument of Jimbo [5] has been followed to calculate the quantum R-matrix for G_{2} in the fundamental seven-dimensional representation [7]. On the other hand, a prescription to give solutions of QYBE

$$
\begin{equation*}
\check{R}_{i j}^{a b}(x) \check{R}_{k f}^{j c}(x y) \check{R}_{d e}^{i k}(y)=\check{R}_{i j}^{b c}(y) \check{R}_{d k}^{a i}(x y) \check{R}_{e f}^{k j}(x) \tag{1}
\end{equation*}
$$

for a given $B G R$ which satisfies

$$
\begin{equation*}
S_{i j}^{a b} S_{k f}^{j c} S_{d e}^{i k}=S_{i j}^{b c} S_{d k}^{a i} S_{e f}^{k j} \tag{2}
\end{equation*}
$$

has been discussed in [8]. We have called the procedure Yang-Baxterization, which is a generalization of the idea presented by Jones in [9]. The advantage of this approach is that it gives the explicit form of $\check{R}(x)$ directly from any given BGR S which provides all of the q-analogue projectors automatically. This prescription depends on the number of distinct eigenvalues of the considered bGR. On the basis of this approach, there have been much discussion about the 3 -eigenvalue cases [8]. It has been shown that the BGR of G_{2} has four distinct eigenvalues [7,8], hence it provides the best example for checking our Yang-Baxterization procedure for the four-eigenvalue cases.

[^0]The basic observation of the Yang-Baxterization comes from the loop-extension of the QG shown by [5,10$]$. For the given co-multiplication Δ for a q-analogue of the universal enveloping algebra U_{q}, there are the basic equations [5, 10]:

$$
\begin{align*}
& {\left[\check{R}(x),(\Pi \otimes \Pi) \Delta\left(U_{q}\right)\right]=0} \tag{3}\\
& \begin{aligned}
& \check{R}(x)\left\{x \Pi\left(X_{\theta}^{+}\right) \otimes \Pi\left(k_{\theta}^{-1}\right)+\Pi\left(k_{\theta}\right) \otimes \Pi\left(X_{\theta}^{+}\right)\right\} \\
& \quad=\left\{\Pi\left(X_{\theta}^{+}\right) \otimes \Pi\left(k_{\theta}^{-1}\right)+x \Pi\left(k_{\theta}\right) \otimes \Pi\left(X_{\theta}^{+}\right)\right\} \check{R}(x)
\end{aligned}
\end{align*}
$$

where II is the representation, x is the spectral parameter and θ stands for the largest root. It has been shown [6] that for a given direct product of Lie algebra representations

$$
\begin{equation*}
\Delta \otimes \Delta=\oplus_{i=1}^{m} E_{i} \tag{5}
\end{equation*}
$$

and the decomposed irreducible spaces there are q-analogue projectors which are related to BGR S through

$$
\begin{equation*}
S=\sum_{i=1}^{m} \lambda_{i} P_{i} \tag{6}
\end{equation*}
$$

where the λ_{i} 's are the distict q-dependent eigenvalues. Obviously it holds that

$$
\begin{equation*}
\check{R}(x)=\sum_{i=1}^{m} \rho_{i}(x) P_{i} \tag{7}
\end{equation*}
$$

Since the solution of (3) and (4) satisfies (1), the consistence requirement leads to

$$
\begin{equation*}
S A=B S \tag{8}
\end{equation*}
$$

with

$$
\begin{equation*}
\check{R}(x=0)=(\text { over all factor }) S \tag{9}
\end{equation*}
$$

and

$$
\begin{align*}
& A=\Pi\left(k_{\theta}\right) \otimes \Pi\left(X_{\theta}^{+}\right) \tag{10}\\
& B=\Pi\left(X_{\theta}^{+}\right) \otimes \Pi\left(k_{\theta}^{-1}\right) . \tag{11}
\end{align*}
$$

Now the question of Yang-Baxterization is how to construct \check{R} from a given S.
Following from (8) and (6), we have in general

$$
\begin{equation*}
P_{i} A P_{j}=\left(\frac{\lambda_{j}}{\lambda_{i}}\right) P_{i} B P_{j} \tag{12}
\end{equation*}
$$

Here the ordering of λ_{i} has to be chosen so that \check{R} is constructed satisfying (1). The P_{i} 's are known for a given S, hence we can calculate $P_{i} A P_{j}$ if a special ordering of λ_{i} exists such that the following hold

$$
\begin{align*}
& P_{i} A P_{i}=P_{i} B P_{i} \tag{13}\\
& P_{i+1} A P_{i}=\left(\frac{\lambda_{i}}{\lambda_{i+1}}\right) P_{i+1} B P_{i} \tag{14}
\end{align*}
$$

$$
\begin{equation*}
P_{i} A P_{i+1}=\left(\frac{\lambda_{i+1}}{\lambda_{i}}\right) P_{i} B P_{i+1} \tag{15}
\end{equation*}
$$

and all other $P_{i} A P_{j}=0$. Then we have

$$
\begin{equation*}
\frac{\rho_{i}(x)}{\rho_{i+1}(x)}=\frac{x+\lambda_{i} / \lambda_{i+1}}{1+x\left(\lambda_{i} / \lambda_{i+1}\right)} . \tag{16}
\end{equation*}
$$

After lengthy but elementary calculation for the four-eigenvalue case, we arrive at

$$
\begin{equation*}
\check{R}(x)=A(x) S^{2}+B(x) S+C(x) I+D(x) S^{-1} \tag{17}
\end{equation*}
$$

where

$$
\begin{align*}
& \begin{aligned}
& A(x)= \frac{\left(\lambda_{4} \lambda_{2}-\lambda_{1} \lambda_{3}\right) x(x-1)}{\left(\lambda_{2} \lambda_{3} \lambda_{4}\right)\left(\lambda_{4}-\lambda_{1}\right)} \\
& B(x)=-\frac{x-1}{\lambda_{4}}-\frac{\left[\left(\lambda_{2}+\lambda_{3}\right)\left(\lambda_{2} \lambda_{4}-\lambda_{1} \lambda_{3}\right)+\lambda_{2} \lambda_{4}^{2}-\lambda_{1}^{2} \lambda_{3}\right] x(x-1)}{\lambda_{2} \lambda_{3} \lambda_{4}\left(\lambda_{4}-\lambda_{1}\right)} \\
& \begin{aligned}
C(x)= & \frac{1}{\left(\lambda_{2} \lambda_{3} \lambda_{4}\right)\left(\lambda_{4}-\lambda_{1}\right)}\left\{\left[\left(\lambda_{1} \lambda_{3}+\lambda_{1} \lambda_{4}+\lambda_{2} \lambda_{3}+\lambda_{2} \lambda_{4}\right)\left(\lambda_{2} \lambda_{4}-\lambda_{1} \lambda_{3}\right)\right.\right. \\
& \left.+\lambda_{2} \lambda_{3}\left(\lambda_{4}^{2}-\lambda_{1}^{2}\right)+\lambda_{1} \lambda_{4}\left(\lambda_{3} \lambda_{4}-\lambda_{1} \lambda_{2}\right)\right] x^{2} \\
& \left.+\left[\lambda_{3}^{2} \lambda_{4}\left(\lambda_{1}+\lambda_{2}\right)-\lambda_{1} \lambda_{2}^{2}\left(\lambda_{3}+\lambda_{4}\right)\right] x\right\}
\end{aligned} \\
& \begin{aligned}
D(x)= & x(x-1) \lambda_{1}\left(x+\frac{\lambda_{3}-\lambda_{2}}{\lambda_{4}-\lambda_{1}}\right)
\end{aligned}
\end{aligned} .
\end{align*}
$$

Now the procedure of constructing \check{R} can be listed as follows:
(i) first find S for a given Lie algebraic structure (5);
(ii) by using

$$
\begin{equation*}
P_{i}=\prod_{j=1, i \neq j}^{m} \frac{S-\lambda_{j}}{\lambda_{i}-\lambda_{j}} \tag{19}
\end{equation*}
$$

the project P_{i} can be found;
(iii) check (13)-(15) and fix the ordering of the eigenvalues λ_{i};
(iv) substitute S and the ordered λ_{i} into (17) and (18); we find $\tilde{R}(x)$ which satisfies (1).

We emphasize that for the 'exotic solutions' we can take (17) as the starting point and directly check the derived $\check{R}(x)$ to satisfy (1) even for some models without projectors [11].

Now we apply the above procedure to the G_{2} case in order to obtain $\check{R}(x)$ related to the seven-dimensional representation of the algebra. First we list the bGR S associated with the representation of $G_{2}[6,12]$:

$$
\begin{equation*}
S=\operatorname{block} \operatorname{diag}\left[A_{6}, A_{5}, \ldots, A_{1}, A_{0}, A_{1}, \ldots, A_{5}, A_{6}\right] \tag{20}
\end{equation*}
$$

where

$$
\begin{align*}
& A_{6}=(u) \\
& A_{5}=\left(\begin{array}{cc}
0 & p_{1} \\
p_{1} & w_{1}
\end{array}\right) \\
& A_{4}=\left(\begin{array}{ccc}
0 & 0 & p_{1} \\
0 & u & 0 \\
p_{1} & 0 & w_{1}
\end{array}\right) \\
& A_{3}=\left(\begin{array}{cccc}
0 & 0 & 0 & p_{3} \\
0 & 0 & p_{2} & q_{1} \\
0 & p_{2} & w_{2} & q_{2} \\
p_{3} & q_{1} & q_{2} & w_{3}
\end{array}\right) \\
& A_{2}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & p_{5} \\
0 & 0 & 0 & p_{4} & q_{3} \\
0 & 0 & u & 0 & 0 \\
0 & p_{4} & 0 & w_{4} & q_{4} \\
p_{5} & q_{3} & 0 & q_{4} & w_{5}
\end{array}\right) \tag{21}\\
& A_{1}=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & p_{8} \\
0 & 0 & 0 & 0 & p_{7} & 0 \\
0 & 0 & 0 & p_{6} & 0 & q_{5} \\
0 & 0 & p_{6} & w_{6} & 0 & q_{6} \\
0 & p_{7} & 0 & 0 & w_{7} & 0 \\
p_{8} & 0 & q_{5} & q_{6} & 0 & w_{8}
\end{array}\right) \\
& A_{0}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & p_{10} & p_{12} \\
0 & 0 & 0 & 0 & p_{12} \\
0 & 0 & p_{9} & q_{13} \\
p_{11} & p_{10} & q_{12} & q_{13} & q_{9} \\
q_{11} & q_{7} & q_{7} & q_{10} & q_{11} \\
q_{13} \\
q_{10} & q_{14} & q_{15} \\
w_{11}
\end{array}\right)
\end{align*}
$$

with

$$
\begin{aligned}
& p_{1}=p_{7}=u^{1 / 2} \quad p_{2}=p_{5}=p_{8}=u^{-1 / 2} \quad p_{3}=p_{4}=p_{6}=1 \quad p_{4}=p_{10}=p_{11}=u^{-1} \\
& w_{1}=u-1 \quad w_{2}=u-u^{-2} \quad w_{3}=w_{1}\left(1+u^{-3}\right) \quad w_{4}=w_{6}=u-u^{-1} \\
& w_{5}=w_{8}=w_{1}\left(u^{-2}+u^{-3}+1\right) \quad w_{7}=w_{1} \quad w_{9}=w_{1}\left(1-u^{-2}\right) \\
& w_{10}=w_{1}\left(1-u^{-5}\right) \quad w_{11}=w_{9}\left(1+u^{-2}\right)^{2} \quad q_{1}=\left[u^{-1}\left(1+u^{-1}\right)\right]^{1 / 2} w_{1}
\end{aligned}
$$

$q_{2}=q_{1}\left(-u^{-3 / 2}\right) \quad q_{3}=q_{5}=q_{1}, \quad q_{4}=q_{6}=-q_{1} u^{-1} \quad q_{7}=w_{6} u^{-1 / 2}$
$q_{8}=-u^{-2} w_{6} \quad q_{9}=u^{-1 / 2} w_{2} \quad q_{10}=u^{-7 / 2} w_{1} \quad q_{11}=u^{-1 / 2} w_{3}$
$q_{12}=u^{-3 / 2} w_{1} \quad q_{13}=-u^{-3} w_{1} \quad q_{14}=-u^{-1}\left(1+u^{-1}+u^{-3}\right) w_{1}$
$q_{15}=-u^{-3 / 2} q_{14}$.
The eigenvalue equations for the above matrices are (λ are the eigenvalues):

$$
\begin{array}{ll}
A_{6}: & (\lambda-u)=0 \\
A_{5}: & (\lambda-u)(\lambda+1)=0 \\
A_{4}: & (\lambda-u)^{2}(\lambda+1)=0 \\
A_{3}: & (\lambda-u)^{2}(\lambda+1)\left(\lambda+u^{-3}\right)=0 \tag{22}\\
A_{2}: & (\lambda-u)^{3}(\lambda+1)\left(\lambda+u^{-3}\right)=0 \\
A_{1}: & (\lambda-u)^{3}(\lambda+1)^{2}\left(\lambda+u^{-3}\right)=0 \\
A_{0}: & (\lambda-u)^{3}(\lambda+1)^{2}\left(\lambda+u^{-3}\right)\left(\lambda-u^{-6}\right)=0 .
\end{array}
$$

The recursion relation is

$$
\begin{equation*}
\left(S+u^{-3}\right)(S-u)(S+1)\left(S-u^{-6}\right)=0 . \tag{23}
\end{equation*}
$$

In order to compare with [7], we first diagonalize S by introducing the orthogonal transformation and then picking up each submatrix corresponding to the distinct eigenvalues. The result is as follows, where the overall factor $u^{1 / 2}$ has been omitted.

For $\lambda=u$

$$
\begin{equation*}
L_{u}=\text { biock diag}\left[L_{1}, L_{2} ; \ldots, L_{6} ; L_{7}, L_{6}, \ldots, L_{1}\right] \tag{24}
\end{equation*}
$$

where

$$
\begin{aligned}
& L_{1}=1 \\
& L_{2}=\left[\boldsymbol{\alpha}_{21}, 0\right], \boldsymbol{\alpha}_{21}=\frac{1}{\sqrt{1+u}}\binom{1}{u^{1 / 2}} \\
& L_{3}=\left[\boldsymbol{\alpha}_{31}, \boldsymbol{\alpha}_{32}, 0\right], \alpha_{31}=\frac{1}{\sqrt{1+u}}\left(\begin{array}{c}
1 \\
0 \\
u^{1 / 2}
\end{array}\right) \quad \boldsymbol{\alpha}_{32}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \\
& L_{4}=\left[\boldsymbol{\alpha}_{41}, \boldsymbol{\alpha}_{42}, 0,0\right], \boldsymbol{\alpha}_{41}=\frac{1}{\sqrt{c}}\left(\begin{array}{c}
u^{-1 / 2} \\
u^{1 / 2} / a \\
1 / a \\
u^{1 / 2}
\end{array}\right) \quad \boldsymbol{\alpha}_{42}=\frac{1}{\sqrt{b}}\left(\begin{array}{c}
-u^{-1 / 2} \\
u^{-3 / 2} a \\
u a \\
-u^{1 / 2}
\end{array}\right)
\end{aligned}
$$

with $a=\sqrt{1+u}, b=u^{3}+u^{2}+u+u^{-1}+u^{-2}+u^{-3}, c=u+1+u^{-1}$,

$$
\begin{aligned}
& L_{5}=\left[\boldsymbol{\alpha}_{51}, \boldsymbol{\alpha}_{52}, \boldsymbol{\alpha}_{53}, 0,0\right] \\
& \boldsymbol{\alpha}_{51}=\frac{u^{1 / 2}}{\sqrt{c}}\left(\begin{array}{c}
(u a)^{-1} \\
u^{-1 / 2} \\
0 \\
u^{-1 / 2} \\
u^{1 / 2} a^{-1}
\end{array}\right) \quad \boldsymbol{\alpha}_{52}=\frac{1}{\sqrt{b}}\left(\begin{array}{c}
-(u a)^{-1} \\
u^{-3 / 2} \\
0 \\
u^{3 / 2} \\
-a u^{1 / 2}
\end{array}\right) \quad \boldsymbol{\alpha}_{53}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

$$
L_{6}=\left[\boldsymbol{\alpha}_{61}, \boldsymbol{\alpha}_{62}, \boldsymbol{\alpha}_{63}, 0,0,0\right]
$$

$$
\alpha_{61}=\frac{1}{\sqrt{u+u^{-1}}}\left(\begin{array}{c}
0 \\
0 \\
u^{-1 / 2} \\
u^{1 / 2} \\
0 \\
0
\end{array}\right) \quad \alpha_{62}=\frac{1}{a}\left(\begin{array}{c}
0 \\
1 \\
0 \\
0 \\
u^{1 / 2} \\
0
\end{array}\right) \quad \alpha_{63}=\frac{1}{\sqrt{d}}\left(\begin{array}{c}
u+u^{-1} \\
0 \\
\left(u^{2}+u\right)^{1 / 2}(u-1 \\
-a u^{-1 / 2}(u-1) \\
0 \\
u^{3 / 2}\left(u+u^{-1}\right)
\end{array}\right.
$$

with $d=u^{5}+u^{4}+u^{3}+u^{2}+u^{1}+1+u^{-1}+u^{-2}$;

$$
L_{7}=\left[\boldsymbol{\alpha}_{71}, \boldsymbol{\alpha}_{72}, \boldsymbol{\alpha}_{73}, 0,0,0,0\right]
$$

$$
\alpha_{71}=\frac{1}{\sqrt{g}}\left(\begin{array}{c}
0 \\
0 \\
u^{-1} \\
u^{-1 / 2}(u+1) \\
u \\
0 \\
0
\end{array}\right) \quad \alpha_{72}=\frac{1}{\sqrt{h\left(u+u^{-1}\right)}}\left(\begin{array}{c}
1+u^{-2} \\
u^{-1 / 2}\left(u+u^{-1}\right) \\
u-u^{-1} \\
u^{-3 / 2}\left(u^{2}-1\right)(u-1) \\
u^{-1}-u \\
u^{1 / 2}\left(u+u^{-1}\right) \\
u^{2}+1
\end{array}\right)
$$

$$
\alpha_{73}=\frac{1}{\sqrt{c l}}\left(\begin{array}{c}
-u^{-1} \\
u^{-3 / 2} c \\
u\left(c+u^{-2}\right) \\
-u^{1 / 2}\left(c+u^{-2}\right) \\
c+u^{-2} \\
u^{3 / 2} c \\
-u c
\end{array}\right)
$$

with

$$
\begin{aligned}
& g=u^{2}+u+2+u^{-1}+u^{-2} h=u^{3}+2 u^{2}+u+u^{-1}+2 u^{-2}+u^{-3} \\
& l=u^{4}+a u^{3}+2 u^{2}+u+2+3 u^{-1}+4 u^{-2}+3 u^{-3}+u^{-4} .
\end{aligned}
$$

For $\lambda=-1$

$$
\begin{equation*}
\bar{L}_{-1}=\text { block diag }\left[\bar{L}_{1}, \bar{L}_{2}, \ldots, \bar{L}_{6}, \bar{L}_{7}, \bar{L}_{6}, \ldots, \bar{L}_{1}\right] \tag{25}
\end{equation*}
$$

where

$$
\begin{aligned}
& \bar{L}_{1}=0 \\
& \bar{L}_{2}=\left[0, \boldsymbol{\beta}_{22}\right] \quad \boldsymbol{\beta}_{22}=\frac{1}{a}\binom{u^{1 / 2}}{-1} \\
& \bar{L}_{3}=\left[0,0, \boldsymbol{\beta}_{33}\right] \quad \boldsymbol{\beta}_{33}=\frac{1}{a}\left(\begin{array}{c}
u^{1 / 2} \\
0 \\
-1
\end{array}\right) \\
& \bar{L}_{4}=\left[0,0, \boldsymbol{\beta}_{43}, 0\right] \\
& \boldsymbol{\beta}_{43}=\frac{1}{\sqrt{a_{1}}}\left(\begin{array}{c}
-a \\
-u \\
u^{-1 / 2} \\
a
\end{array}\right)
\end{aligned}
$$

with $a_{1}=u^{2}+2 u+2+u^{-1}$;
$\bar{L}_{5}=\left[0,0,0, \boldsymbol{\beta}_{54}, 0\right] \quad \boldsymbol{\beta}_{54}=\frac{1}{\sqrt{a_{1}}}\left(\begin{array}{c}-1 \\ -u^{1 / 2} a \\ 0 \\ a u^{-1 / 2} \\ a u^{1 / 2}\end{array}\right)$
$\bar{L}_{6}=\left[0,0,0, \boldsymbol{\beta}_{64}, \boldsymbol{\beta}_{65}, 0\right] \quad \boldsymbol{\beta}_{64}=\frac{1}{\sqrt{a_{1}}}\left(\begin{array}{c}-1 \\ 0 \\ -a u^{1 / 2} \\ a u^{-1 / 2} \\ 0 \\ u^{1 / 2}\end{array}\right) \quad \boldsymbol{\beta}_{65}=\frac{1}{a}\left(\begin{array}{c}0 \\ u^{1 / 2} \\ 0 \\ 0 \\ -1 \\ 0\end{array}\right)$
$\bar{L}_{7}=\left[0,0,0, \boldsymbol{\beta}_{74}, \boldsymbol{\beta}_{75}, 0,0\right]$
$\boldsymbol{\beta}_{74}=\frac{1}{\sqrt{b_{1}}}\left(\begin{array}{c}-u^{-1 / 2} \\ -1 \\ -u^{-1 / 2}(u+1) \\ -u^{-1}\left(u^{2}-1\right) \\ u^{-1 / 2}(u+1) \\ 1 \\ u^{1 / 2}\end{array}\right) \quad \boldsymbol{\beta}_{75}=\frac{1}{\sqrt{b_{2}}}\left(\begin{array}{c}u^{-1 / 2} \\ -u^{-1} \\ -u^{-1 / 2}\left(u^{2}-1\right) \\ u^{-1}\left(u^{2}-1\right) \\ -u^{-3 / 2}\left(u^{2}-1\right) \\ u \\ -u^{1 / 2}\end{array}\right)$
with $b_{1}=u^{2}+3 u+4+3 u^{-1}+u^{-2}, b_{2}=u^{3}+2 u^{2}-2+2 u^{-2}+u^{-3}$.
For $\lambda=-u^{-3}$

$$
\begin{equation*}
\tilde{L}_{-u^{-3}}=\text { block } \operatorname{diag}\left[\tilde{L}_{1}, \tilde{L}_{2}, \ldots, \tilde{L}_{6}, \tilde{L}_{7}, \tilde{L}_{6}, \ldots, \tilde{L}_{1}\right] \tag{26}
\end{equation*}
$$

where

$$
\begin{aligned}
& \tilde{L}_{1}=0, \tilde{L}_{2}=0, \tilde{L}_{3}=0 \\
& \tilde{L}_{4}=\left[0,0,0, \gamma_{44}\right], \gamma_{44}=\frac{1}{\sqrt{b}}\left(\begin{array}{c}
-u^{3 / 2} \\
a u^{1 / 2} \\
-a u^{-1} \\
u^{-3 / 2}
\end{array}\right) \\
& \tilde{L}_{5}=\left[0,0,0,0, \gamma_{55}\right] \quad \gamma_{55}=\frac{1}{\sqrt{b}}\left(\begin{array}{c}
-a u \\
u^{1 / 2} \\
0 \\
-u^{-1 / 2} \\
a u^{-3 / 2}
\end{array}\right) \\
& \tilde{L}_{6}=\left[0,0,0,0,0, \gamma_{66}\right] \quad \gamma_{66}=\frac{1}{\sqrt{b}}\left(\begin{array}{c}
-a u \\
0 \\
u^{1 / 2} \\
-u^{-1 / 2} \\
0 \\
a u^{-3 / 2}
\end{array}\right) \\
& \tilde{L}_{7}=\left[0,0,0,0,0, \gamma_{76}, 0\right] \\
& \gamma_{76}=\frac{1}{\sqrt{b}}\left(\begin{array}{c}
-u \\
-u^{-1 / 2}(u-1) \\
-1 \\
u^{3 / 2} \\
u^{-3 / 2} \\
u^{-1}
\end{array}\right) .
\end{aligned}
$$

For $\lambda=u^{-6}$

$$
\begin{equation*}
\tilde{\tilde{L}}_{u^{-6}}=\operatorname{block} \operatorname{diag}\left[\tilde{\tilde{L}_{1}}, \tilde{\tilde{L}_{2}}, \ldots, \tilde{\tilde{L}}_{6}, \tilde{\tilde{L}}_{7}, \tilde{\tilde{L}}_{6}, \ldots, \tilde{\tilde{L}}_{1}\right] \tag{27}
\end{equation*}
$$

where
$\begin{array}{llllll}\tilde{L}_{1}=0 & \tilde{L}_{2}=0 & \tilde{L}_{3}=0 & \tilde{\tilde{L}}_{4}=0 & \tilde{L}_{5}=0 & \tilde{L}_{6}=0\end{array}$
$\tilde{L}_{7}=\left[0,0,0,0,0,0, \gamma_{77}\right] \quad \gamma_{77}=\frac{1}{\sqrt{c_{1}}}\left(\begin{array}{c}u^{5 / 2} \\ -u^{2} \\ u^{1 / 2} \\ -1 \\ -u^{1 / 2} \\ -u^{2} \\ -u^{5 / 2}\end{array}\right)$
with $c_{1}=u^{5}+u^{4}+u+1+u^{-1}+u^{-4}+u^{-5}$.
Noting that the labelling set for G_{2} is $(3,2,1,0,-1,-2,-3)$, the above results coincide with those in [7].

Finally we set the ordering of λ_{i} such that $P_{i} A P_{i+1} \neq 0$. It is found that

$$
\begin{equation*}
\lambda_{1}=-u^{-3} \quad \lambda_{2}=u \quad \lambda_{3}=-1 \quad \lambda_{4}=u^{-6} \tag{28}
\end{equation*}
$$

Substituting these eigenvalues and (21) into (17) and (18), we derive the solution of (1):

$$
\begin{equation*}
\check{R}(x)=\operatorname{block} \operatorname{diag}\left[R^{1}, R^{2}, \ldots, R^{6}, R^{7}, R^{6}, \ldots, R^{2}, R^{1}\right] \tag{29}
\end{equation*}
$$

where R^{i} is an $i \times i$ symmetric matrix. We list all the non-zero elements as follows:

$$
\begin{aligned}
& R_{11}^{1}=(x-u)\left(x-u^{6}\right)\left(1-u^{-4} x\right) \\
& R_{11}^{2}=x(u-1)\left(1-u^{-4} x\right)\left(u^{6}-x\right) \\
& R_{12}^{2}=u^{-7 / 2}(x-1)\left(x-u^{4}\right)\left(u^{6}-x\right) \\
& R_{22}^{2}=(1-u)\left(x-u^{6}\right)\left(1-u^{-4} x\right) \\
& R_{11}^{3}=R_{11}^{2} \\
& R_{13}^{3}=R_{12}^{2} \\
& R_{22}^{3}=R_{11}^{1} \\
& R_{33}^{3}=R_{22}^{2} \\
& R_{11}^{4}=u^{-4} x\left(u^{2}-1\right)\left(x-u^{6}\right)\left[x\left(1-u+u^{2}\right)-u^{3}\right] \\
& R_{12}^{4}=u^{-2}(u+1)^{1 / 2} x(x-1)\left(u^{6}-x\right) \\
& R_{13}^{4}=u^{-7 / 2}(u+1)^{1 / 2}(u-1) x(1-x)\left(u^{6}-x\right) \\
& R_{14}^{4}=u^{-3}(1-x)\left(x-u^{3}\right)\left(x-u^{6}\right) \\
& R_{22}^{4}=u^{-4} x(1-u)\left(u^{6}-x\right)\left[x\left(1+u+u^{2}\right)-u\left(1+u+u^{3}\right)\right] \\
& R_{23}^{4}=u^{-5 / 2}(1-x)\left(u^{6}-x\right)\left(u^{2}-x\right) \\
& R_{24}^{4}=u^{-1}(u-1)(x-1)(1+u)^{1 / 2}\left(x-u^{6}\right) \\
& R_{33}^{4}=u^{-4}(u-1)\left(x-u^{6}\right)\left[x\left(1+u^{2}+u^{3}\right)-u^{2}\left(1+u+u^{2}\right)\right] \\
& R_{34}^{4}=u^{-5 / 2}(u+1)^{1 / 2}(x-1)(u-1)\left(u^{6}-x\right) \\
& R_{44}^{4}=u^{-4}(u-1)\left(x-u^{6}\right)\left(x-u+u^{2}-u^{3}\right) \\
& R_{11}^{5}=u^{-4} x(u-1)\left(x-u^{6}\right)\left[x\left(1+u^{2}+u^{3}\right)-u^{2}\left(1+u+u^{2}\right)\right] \\
& R_{12}^{5}=u^{-5 / 2} x(u+1)^{1 / 2}(x-1)(u-1)\left(u^{6}-x\right) \\
& R_{14}^{5}=-u^{-7 / 2} x(u+1)^{1 / 2}(1-x)(1-u)\left(u^{6}-x\right) \\
& R_{15}^{5}=u^{-5 / 2}(1-x)\left(u^{6}-x\right)\left(u^{2}-x\right) \\
& R_{22}^{5}=u^{-4} x\left(u^{2}-1\right)\left(x-u^{6}\right)\left(x-u+u^{2}-u^{3}\right) \\
& R_{24}^{5}=u^{-3}(1-x)\left(x-u^{3}\right)\left(x-u^{6}\right) \\
& R_{25}^{5}=u^{-1}(u+1)^{1 / 2}(1-x)(u-1)\left(u^{6}-x\right) \\
& R_{33}^{5}=R_{11}^{1} \\
& R_{44}^{5}=u^{-4}\left(u^{2}-1\right)\left(x-u^{6}\right)\left[x\left(1-u+u^{2}\right)-u^{3}\right] \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& R_{45}^{5}=u^{-2}(u+1)^{1 / 2}(x-1)(u-1)\left(u^{6}-x\right) \\
& R_{55}^{5}=u^{-4}(u-1)\left(x-u^{6}\right)\left[x\left(1+u+u^{2}\right)-u\left(1+u+u^{3}\right)\right] \\
& R_{11}^{6}=R_{24}^{5} \\
& R_{13}^{6}=R_{12}^{5} \\
& R_{14}^{6}=R_{14}^{5} \\
& R_{16}^{6}=R_{15}^{5} \\
& R_{22}^{6}=R_{11}^{2} \\
& R_{25}^{6}=R_{12}^{2} \\
& R_{33}^{6}=R_{22}^{5} \\
& R_{34}^{6}=R_{14}^{4} \\
& R_{36}^{6}=R_{25}^{5} \\
& R_{44}^{6}=R_{44}^{5} \\
& R_{46}^{6}=R_{45}^{5} \\
& R_{55}^{6}=R_{22}^{2} \\
& R_{66}^{6}=R_{55}^{5} \\
& R_{11}^{7}=u^{-4} x^{2}(u-1)\left(u^{4}-1\right)\left[u^{2}\left(u^{4}+1\right)-x\left(u^{2}+1\right)\right] \\
& R_{12}^{7}=u^{-3 / 2} x(x-1)(u-1)\left[x\left(1+u+u^{3}\right)-u^{5}\left(1+u+u^{2}\right)\right] \\
& R_{13}^{7}=u^{-3} x(x-1)(u-1)\left[u^{5}\left(1+u+u^{2}\right)-x\left(1+u+u^{3}\right)\right] \\
& R_{15}^{7}=u^{-1} x(u-1)(x-1)\left(u^{2}-x\right) \\
& R_{14}^{7}=u^{-7 / 2} x(x-1)\left(u^{2}-1\right)\left[x\left(1-u+u^{2}\right)-u^{5}\right] \\
& R_{16}^{7}=u^{-5 / 2} x(u-1)(x-1)\left(x-u^{2}\right) \\
& R_{17}^{7}=u^{-2}(1-x)\left(u^{2}-x\right)\left(u^{5}-x\right) \\
& R_{22}^{7}=u^{-4} x(u-1)^{2}\left[u^{7}\left(1+u+u^{2}\right)+x u^{4}\left(1+u^{2}\right)-x^{2}\left(1+u+u^{2}+u^{3}+u^{4}\right)\right] \\
& R_{23}^{7}=u^{-1 / 2} x(u-1)(1-x)\left(u^{2}-x\right) \\
& R_{24}^{7}=u^{-2} x\left(u^{2}-1\right)(x-1)\left(u^{5}-u^{4}+u^{3}-x\right) \\
& R_{25}^{7}=u^{-7 / 2} x(1-x)(u-1)\left[u^{7}+u^{6}+u^{4}-x\left(u^{2}+u+1\right)\right] \\
& R_{26}^{7}=u^{-2}(1-x)\left(u^{2}-x\right)\left(u^{5}-x\right) \\
& R_{27}^{7}=u^{5 / 2}(u-1)(x-1)\left(x-u^{2}\right) \\
& R_{33}^{7}=u^{-4} x(u-1)^{2}(1+u)\left[u^{4}\left(1+u^{2}+u^{4}\right)-x\left(1+u^{2}\right)-x^{2}\right] \\
& R_{34}^{7}=u^{-7 / 2} x\left(u^{2}-1\right)(1-x)\left(u^{5}-u^{4}+u^{3}-x\right) \\
& R_{35}^{7}=u^{-2}\left(u^{2}-x\right)(1-x)\left(u^{5}-x\right) \\
& R_{36}^{7}=u^{-3 / 2}(1-x)(u-1)\left[u^{5}\left(u^{2}+u+1\right)-\left(u^{3}+u+1\right) x\right] \\
& R_{37}^{7}=u(x-1)(u-1)\left(u^{2}-x\right) \\
& R_{44}^{7}=u^{-4}\left(u^{3}-x\right)\left[u x^{2}+x\left(1-2 u+u^{3}-2 u^{4}+u^{5}-2 u^{7}+u^{8}\right)+u^{7}\right] \\
& R_{45}^{7}=u^{-1 / 2}(1-x)(u-1)(u+1)\left(u^{5}-u^{2} x+u x-x\right) \\
& R_{46}^{7}=u^{-2}(x-1)\left(u^{2}-1\right)\left(u^{5}-u^{2} x+u x-x\right) \\
& R_{47}^{7}=u^{-1 / 2}(1-x)\left(u^{2}-1\right)\left(u^{5}-u^{4}+u^{3}-x\right) \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& R_{55}^{7}=u^{-4}(u-1)^{2}(1+u)\left[u^{8}+x u^{4}\left(1+u^{2}\right)-x^{2}\left(1+u^{2}+u^{4}\right)\right] \\
& R_{56}^{7}=u^{1 / 2}(u-1)(1-x)\left(u^{2}-x\right) \\
& R_{57}^{7}=u^{-2}(x-1)(u-1)\left[u^{4}\left(1+u^{2}+u^{3}\right)-x\left(u^{2}+u+1\right)\right] \\
& R_{66}^{7}=u^{-4}(u-1)^{2}\left[u^{5}\left(1+u+u^{2}+u^{3}+u^{4}\right)-x u^{3}\left(1+u^{2}\right)-x^{2}\left(1+u+u^{2}\right)\right] \\
& R_{67}^{7}=u^{-7 / 2}(x-1)(u-1)\left[x\left(1+u+u^{2}\right)-u^{4}\left(1+u+u^{3}\right)\right] \\
& R_{77}^{7}=u^{-4}(u-1)\left(u^{4}-1\right)\left[u^{4}\left(u^{2}+1\right)-x\left(u^{4}+1\right)\right] .
\end{aligned}
$$

This $\check{R}(x)$-matrix provides Boltzmann weights of an 175 -vertex model [7]. A direct check also confirmed that this $\check{R}(x)$ satisfies (1), hence we complete the derivation of $\check{R}(x)$ for G_{2} from the point of view of the Yang-Baxterization.

To conclude the paper we remark that the starting point of the method employed here is the braid relation. Although it is parallel to the method of [7] for the case treated here, it is applicable to the 'exotic solution'. We will treat the 'exotic solution' of the G_{2} case in a further publication.

M-L G is supported in part by NSF PHY-8908459 Paul, Gabriella Rosenbaum Foundation and NSF of China through the Nankai Institute of Mathematics.

References

[1] Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (New York: Academic)
[2] Yang C N and Ge M L (eds) 1989 Braid Group, Knot Theory and Statistical Mechanics (Singapore: World Scientific)
[3] Wadati M, Deguchi T and Akutsu Y 1989 Phys. Rev. 180247
[4] Jimbo M 1989 Braid Group, Knot Theory and Statistical Mechanics ed C N Young and M L Ge (Singapore: World Scientific) p 111-34
[5] Jimbo M 1986 Commun. Math. Phys. 102537
[6] Yu N Reshetikhin 1990 Preprint LOMI E-4-87, E-17-87
[7] Kuniba A 1990 J. Phys. A: Math. Gen. 231349
[8] Ge M L, Wu Y S and Xue K 1990 Explicit trigonometric Yang-Baxterization Preprint ITP-SB-90-92
[9] Jones V 1985 Commun. Math. Phys. 12563
[10] Jimbo M 1985 Lett. Math. Phys. 1063
[11] Ge M L and Xue K 1990 New Solutions of Braid Group Representations Associated with the Yang-Baxter Equation Preprint ITP-SB-90-20
[12] Ge M L, Li Y Q and Xue K 1990 Int. J. Mod. Phys. 51975

[^0]: || Permanent address: Theoretical Physics Division, Nankai Institute of Mathematics, Tianjin, 300071, People's Republic of China.

