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Abstract. The explicit expression o f  a Solution that relates to the seven-dimensional rep- 
resentation of the Lie algebra G, o f t h e  quantum Yaw-Baxterequation (QYBE) is obtained 
by applying the Yang-Baxterization procedure to the braid group representation (BGR). 
The result is consistent with an earlier one derived by a different method. 

Recently the relation between the solutions of quantum Yang-Baxter equations (QYBE) 
and the representation of braid groups (BGR) has generated much interest [l-31. Based 
on the quantum group (QG), a systematic method was formulated by Jimbo to generate 
the solutions of QYBE [4,5] which are related to Lie algebras A,, E,, C, and D, in 
their fundamental representations. In [6], the BGR associated with the fundamental 
representation of GZ was first obtained based on the general theory of the QG. The 
argument of Jimbo [ 5 ]  has been followed to calculate the quantum R-matrix for G,  
in the fundamental seven-dimensional representation [7]. On the other hand, a prescrip- 
tion to give solutions of QYBE 

d ; h ( x ) R J g x y ) R : e ( y )  = d f ( y ) R ; ; ( x y ) d $ ( x )  (1) 

for a given BGR which satisfies 

has been discussed in [SI. We have called the procedure Yang-Baxterization, which 
is a generalization of the idea presented by Jones in [9]. The advantage of this approach 
i s  that it gives the explicit form of d ( x )  directly from any  given BGR S which provides 
all of the q-analogue projectors automatically. This prescription depends on the number 
of distinct eigenvalues of the considered BGR. On the basis of this approach, there 
have been much discussion about the 3-eigenvalue cases [8J. It has been shown that 
the BGR of G2 has four distinct eigenvalues [7,8], hence it provides the best example 
for checking our Yang-Baxterization procedure for the four-eigenvalue cases. 
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570 Ma-Lin Ge er a/  

The basic observation of the Yang-Baxterization comes from the loop-extension 
of the QC shown by 15,101. For the given co-multiplication A for a q-analogue of the 
universal enveloping algebra Uq, there are the basic equations [5, IO]: 

[ R ( x ) ,  (II@II)A(U,)]=O (3) 

R ( x ) l x n ( x 3 o n ( k ; ' )  + n ( k , ) o n ( x ; ) )  

= [ I I ( X ~ ) o I I ( k , ' ) + x n ( k , ) o I I ( X t ) ) R ( x )  (4) 

where n is the representation, x is the spectral parameter and 0 stands for the largest 
root. It has been shown [6] that for a given direct product of Lie algebra representations 

... 

A @ A = @  Ej (5) 
i = l  

and the decomposed irreducible spaces there are q-analogue projectors which are 
related to BCR S through 

m 

where the Ai's are the distict q-dependent eigenvalues. Obviously it holds that 

Since the solution of (3) and (4) satisfies ( l ) ,  the consistence requirement leads to 

S A  = BS (8) 

with 

R ( x = o )  =(over all factor)s (9) 

and 

A = 11( k , ) O I I ( X i )  

B = n ( x ; ) o n ( k a ' ) .  

Now the question of Yang-Baxterization is how to construct R from a given S. 
Following from (8) and (6), we have in general 

P , A 4  = (:) P j B 4  

Here the ordering of Ai has to be chosen so that R is constructed satisfying (1). The 
PE's are known for a given S, hence we can calculate P ; A 4  if a special ordering of A! 
exists such that the following hold 

PiAP; = PiBP, (13 )  



and all other P,A6 = 0. Then we have 

Yang-Baxterization of braid group representation 

vali After lengthy but elementary calculatic for th  four-eigt case, we arriv 

Now the procedure of constructing R can be listed as follows: 
(i) first find S for a given Lie aigebraic struciure ( 5 ) ;  
(ii) by using 

the project P, can be found; 
(iii) check (13)-(15) and fix the ordering of the eigenvalues A , ;  
(iv) substitute S and the ordered A,  into (17) and (18); we find R(x)  which satisfies 

We emphasize that for the ‘exotic solutions’ we can take (17) as the starting point 
and directly check the derived R ( x )  to satisfy (1) even for some models without 
projectors [iii. 

Now we apply the above procedure to the G2 case i n  order to obtain d ( x )  related 
to the seven-dimensional representation of the algebra. First we list the BGR S associated 
with the representation of G2 [6,121: 

(1). 

S =block diag[A,, A S , .  . . , A , ,  A,, A , ,  . . . , AS, A6] (20) 
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where 

A,=(u)  

p 2 = p s = p s =  U-‘/> p,= Pa= Pb= 1 . = P l o = P I l =  I12 PI = P7 = U 

w , = u - 1  w 2 =  U - U - 2  w, = w , ( l  +U-)) w 4 = w 6 = u - - u - ’  

w5 = w8 = w, (u - *+  + 1) w, = w, w, = w , ( l  - U - 2 )  

w , o =  w , ( 1 - u - 5 )  w , , = w , ( l + u - 2 ) ’  q ,  = [ u - ‘ ( 1 + u - ’ ) I ” 2 w I  
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-112 
42 = % - U  9 3  = 95 = 9, 9+= q6=-9,u-I 97 = W6U 

q*= -u-2wg q9 = u - : / 2  W2 q , o =  W ,  q, ,  = u - 1 / 2  

q , 2 =  u - 3 / 2  WI q, ,  = -u- 'wl  qI4=  - u - ' ( l  +U-'+ u- ' )w,  

qrs= -u-3/2q,4. 

-312)  

W3 

The eigenvalue equations for the above matrices are ( A  are the eigenvalues): 

A,: 

A , :  

A .  
c.4. 

A,:  

A*: 

A , :  

A,: 

( A - u ) = O  

(A  -u)(A + I )  = O  

I ,  . . \ 2 , L l l , - n  
( & - - U ,  {"-,,-U 

( A  - ~ ) ~ ( h + l ) ( A + u - ~ )  = O  

( A  - u) ' (A + l ) ( A  + C3) = O  

( A  - u)'((h + l)'(A + u - 9 ~ 0  

( A  - u)'(A + 1 ) 2 ( A  + u-')(h - U ' 6 ) = 0  

The recursion relation is 

(S+ u - ' ) ( s  - u ) ( S  + 1 ) ( S  - U P )  = 0. (23) 

In order to compare with [7], we first diagonalize S by introducing the orthogonal 
transformation and then picking up each submatrix corresponding to the distinct 
eigenvalues. The result is as follows, where the overall factor u 1 l 2  has been omitted. 

For A = U 

~ L, = biock diag[L, L Z 9  ~ ~ ; LSi L:; L:i  ~ ~ ~ ; L:]  (24) 

where 

L , = l  



with d = u 5 + u 4 + u 3 + u 2 + u 1 + 1 +  u - ‘ f K 2 ;  

with 

g = u 2 i  u t 2 i - u - ’ +  U-> h = u3i -2u2+ u + u - ’ + ~ u - ’ +  K 3 ,  

1 = U4 i 4 1 4 3  i 2u2 + U i 2 i- 3 U - I i 4u -2  i 3 U - 3  + U -4. 

For A = -1  

E-, =block diag[ E , ,  E2, . . . , E6, E J ,  L6,. . . , Ell 
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where 

L,=O 

with b ,  = u 2 + 3 u + 4 + 3 u - ' +  U-', b,= u 3 + 2 u 2 - 2 + 2 f 2 +  K 3 .  
For A = - u - ~  

- -  - - -  
i_.-l =block diag[ L,  , L1,. , . , L6,  L7, L,, . . . , i,] 
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where 

i, =a, i ,=o ,  i, = 0 

I -au \ 

-au 

i 6  = [o, 0, 0, 0, 0, 7661 

f, = [O, o,o,o, 0, Y76,Ol 

For A = - 3 1  E E I  - 
i,-6=block diag[L,, L,,  . . . , L,, L,, L,, . . . , i,] (27) 

where 

L,=O L2=0 L,=O L,=O L,=O L , = O  
- - - * E - - - f 

f 1 
L7 = [O, o,o, o,o, 0, Y771 Y 7 7 = x  

with c I =  u S + ~ 4 + ~ + l + ~ - ' + ~ ~ 4 + ~ - 5 .  

coincide with those in [7]. 
Noting that the labelling set for G, is (3, 2, 1, 0, -1,  -2, -3), the above results 
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Finally we set the ordering of A,  such that P,AP,+, # 0. It is found that 

517 

(28) 

Substituting these eigenvalues and (21) into (17) and (18), we derive the solution of (1): 

(29) 

3 A ,  = -U- A 2 = u  A, = -1 A 4  = u - ~ .  

R ( x )  = blockdiag[R', R', . . . , R6, R', R 6 , .  . . , R', R'] 

where R' is an i x i symmetric matrix. We list all the non-zero elements as follows: 

R : ,  = (X - U ) ( X  - U")( 1 - K ' X )  

R:, = x ( u -  1)(1 - u - " x ) ( u 6 - x )  

R Z  1 2 - u  - -712 ( x - 1 ) ( x - u 4 ) ( u ~ - x )  

R:,=(l - u ) ( x -  u6)(1 -u- 'x)  

R:, = R:, 

R : ~ = R : ~  

R:, = R:, 

R:, = R:, 

R ; , = u - ~ x ( u ~ - ~ ) ( x - u ~ ) [ x (  1 - U +  U')- U'] 

R;>= U-'( U + l)'"x(x- 1)( U " - x )  

~4 I 3  - u - 7 / 2 (  - U +  1)"2(u - l ) x ( l  - x ) ( u " x )  

R;: = U-'(] -x)(x - u' ) (x  - U") 

R;,= u - ~ x ( ~  - u ) ( u " ~ ) [ x ( l +  u + u 2 )  - u ( l + u +  U')] 

R4 2) - - U - 5 / 2  (1 - x ) ( u 6 -  x ) ( u 2  -x) 

R:4= u- ' (u  - I)(x- 1)(1+ u ) ' j 2 ( X -  u6) 

R ~ , = u - ~ ( u - - ~ ) ( x - u ~ ) [ x ( ~ + u ~ + u ~ ) - u ~ ( ~ + u + u ~ ) ]  

R:= U-si2(u+l)'/'(X- l ) ( u  - l ) ( u " - x )  

R h =  u-"(u - l ) (x  - u " ) ( x -  U +  U'- U') 

R:, = u - 4 x ( u - l ) ( x - ~ 6 ) [ ~ ( 1 +  U'+ u 3 ) -  u2(1 + U +  U')] 

R:,= u - ~ ' ~ x ( u +  l )"2(x-  l ) ( u  - l)(U"x) 

R:,= - u - ' / ~ x ( u  + l)"'(l- x ) ( l -  u)(u"x) 
RS - - U - 5 / 2  (1 -x ) (  u 6 - x ) (  U ' - x )  

R:, = u - ~ x ( u ' -  l ) (x  - u 6 ) ( x - u +  U'- U') 

R:, = c 3 ( l  -x) (x - u ' ) (x -  U6) 

R: ,=  u - ' ( u +  1)'j2(1 - x ) ( u  - l)(U"x) 

R:, = R : ,  
R:,= u-'(u2-  l ) ( x -  u6)[x( 1 - U + U 2 ) -  U'] 
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R:,= u-’ (u + 1)”’(x - l)(u - I)(u6-x) 
RZ5 = u-*(u - I)(x- U6)[X(l + U +  U’) - u ( l +  U +  U’)] 

R:,  = R:, 

R : ~  = R:, 
Re4= R:4 

Rf6 * R:s 
R ; ~ =  R: ,  

R;, = R:, 
R:, = R:2 

R k =  R;‘4 
R:6 = R:, 
Rf4 = R:, 
R26 = RiS 
R$ = R:, 
RZ6= R:,  
RT, 5 u-‘x2(u - l ) (u4-  l ) [u2(u4+ 1)-x(u2+ l)] 
R:, = u-”~x(x- l)(u - l)[x(l + U +  U’) - u’(l + U +  U’)] 

RI,= u-’x(x-~)(u- l)[u’(l + U +  U’) -x(l+ U +  U’)] 

RY5 = u - ’ x ( u  - l)(x- I)(u*-x) 
R i 4 =  u-”’x(x- I)(u’- l)[X(l- U +  u 2 ) -  U’] 

R:,=  UP’X(U- l)(x- 1)(x-u2) 
R:, 5 u-’(1 -x)(u~-x)(u’-x) 
R:, = u-*x(u - 1)2[u7(1 + U + u2)+xu4(1 + U’) -x2(1 + U  + U’+ U’+ U‘)] 
R:,= u-”’x(u - 1)(1 -x)(u‘-x) 
R:,= u-’x(u’- I)(x- l)(& u4+ U’-X) 

R:,= u-’l2x(1 -x)(u - l)[u’+ u6+u4-x(u2+ U +  I ) ]  

RZ6= U~’(~-X)(U’-X)(U’-X) 
R:,= us/’(u-l)(x-l)(X-U2) 
R:,= U - ~ X ( U  - 1)’(1+ u)[u4(1 + U’+ u4) -x(l +u2)-x2] 
R:4= u - ’ / ~ x ( u ~ -  I ) (  1 -X)(Us- u4+ U3-X) 
R:, = u- ’ (u ’ -x ) (  1 -x)(u’-x) 
R : ~ =  u-3 /2 (1  -x)(u- i)[us(u2+ I )  - ( U 3 +  U +  11x1 
R;, = u(x- l)(u - l)(U2-X) 
R:,= ~C‘(U’-X)[UX‘+X(~ - 2 u +  u 3 - 2 u 4 +  u 5 - 2 u 7 + ~ ’ ) +  u 7 ]  

R:, = u-’l2(  1 -x)(u- l)(u+ 1)(uS- U2X+ UX-X) 

R i 6 =  u-’(x-1)(u2- l)(us-uzx+ux-x) 
R:,= u-’/’(l -x)(u2- l)(uS- u 4 +  u’-X) 
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R:5= u-‘(u - I),(  1 +  u ) [ u s + ~ u 4 ( I  + u 2 )  -x2( 1 + u2+ U“)] 

Rl 5 6 -  - U 1/2 ( U -  1)(1 -x) (u2-x)  

R : , =  u - ’ ( x -  l ) ( u  - l ) [ u “ ( l +  U’+ U’) -x(u’+ U +  l ) ]  

Rz6= U ? ( U  - l)’[u’( 1 + u + u 2 + u 3 +  u4) - x u ’ ( ~ + u * ) - x ~ ( ~  + U +  U’)] 

R &  = u-’ / ’ (x - l ) ( u  - l ) [ x ( l +  U +  U’) -u4(1 + u+u’)] 
R:,= u-*(u - l)(u‘-l)[u“(u’+ 1 ) - x ( u 4 +  l)] .  

This R(x)-matrix provides Boltzmann weights of an 175-vertex model [7]. A direct 
check also confirmed that this R ( x )  satisfies ( l ) ,  hence we complete the derivation of 
d ( x )  for G, from the point of view of the Yang-Baxterization. 

To conclude the paper we remark that the starting point of the method employed 
here is the braid relation. Although it is parallel to the method of [7] for the case 
treated here, it is applicable to the ‘exotic solution’. We will treat the ‘exotic solution’ 
of the G, case in a further publication. 

M-L G is supported in part by NSF PHY-8908459 Paul, Gabriella Rosenbaum Founda- 
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